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Quadratic Programming 

A Variant of the Wolfe-Markowitz Algorithms 

Although a convex quadratic objective can be treated by general convex 

programming;  and also can be reduced to the  convex separable case by a change 

of variables,   the linear nature of its partial derivatives has given rise to 

an elegant theory important in its own light.     It is doubtful at this writing 

that full potentiality of this theory has been realized. 

Barankin and Dorfman (195Ö)    first pointed out that if the linear 

Lagrangian conditions of optimality were combined with those of the original 

system, the optimum solution was a basic solution in the enlarged system with 

the property that only one of certain pairs of variables were in the basic set. 

Markowitz   (1956),  on the other hand,   showed that it was possible to modify the 

enlarged system and then parametrically generate a class of basic solutions 

with the above special property which converges to the optimum in a finite 

number of  iterations.    Finally, Wolfe  (1959) proved,  in an elegant way,  that 

an easy way to do this is to modify the simplex algorithm so as not to allow 

a variable to enter the basic set if its "complementary" variable is already 

in the basic set.    Thus by modifying a few instructions in a simplex code for 

linear programs it was possible to solve a convex quadratic program.'    We shall 

present here a variant of Wolfe's procedure.    The chief difference is a tighter 

selection rule that results in a monotonically decreasing objective instead of 

a decreasing measure of "dual" infeasibility.    It is believed to be computa- 

tionally more efficient because there can be a greater decrease in the  value 

of the quadratic function in each iteration. 

*    The name and bracketed date refers to references at the end of the report. 
Other references on quadratic programs are listed there also. 



Quadratic programs can arise in several ways. Wolfe lists four in his 

paper as follows: 

Regression: To find the best least-square fit to given data, where certain 

parameters are known a priori to satisfy inequality constraints. 

Efficient Production:  Maximization of profit, assuming linear production 

functions and linearly varying marginal costs; see Dorfman (1951). 

Minimum Variance:  To find the solution of a linear program with variable 

cost coefficients which will have given expected costs and minimum 

variance; see Markowitz (1959)• 

Convex Programming: To find the minimum of a general convex function under 

linear constraints and quadratic approximation; see White, Johnson 

and Dantzig (1958). 

PRELIMINARIES: 

Before stating the problem, let us note that every quadratic form can be 

conveniently expressed in terms of a symmetric matrix associated with its 

coefficients. For example, for n = 5 variables, 

(1) Q(x) = c:LLx1 +  c22x2 + c53x5 + Sc^x^Xg + 2c25x2x5 + 20^^ 

—  l.XTJ X-n)    X^J 

pn c^ 

c^ C22 

C13 C25 

15 ^ 

25 X2 

35 X3 

T 
= xiCx 

•where    T    stands for transpose. 

T 
Definition: A quadratic form is called positive definite if x Cx > 0 

T 
for all x + 0; it is called positive semi-definite if x Cx ^, 0 for all x. 
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PROBLEM: Find x = (x , x ,   ...,  x ) ^ 0 and Min Q(x) satisfying 

(2)      Ax = b   , 

x Cx = Q(x) , 

A=[a..] , i = 1, 2, ..., m 

where    Q(x)    is positive semi-definite. 

** th Kuhn-Tucker Qptimality Conditions:       Let A.,  C.  denote the J       column of 
J     J 

A and C and let 

(5)     y, = qx - TA , (7T « TT^, 7T2, . . . , 7:m) 

THE0RE4 1: A solution x = x  is minimal if there exists a rr = TT , 

y = y  such that, for j = 1, 2, ..., n , 

(10      Ax0 = b, x0 >Q , (Primal feasibility). 

(5) 

(6) 

y^-^O, 

o   o   „ y. • x. = 0 
J   J 

("Dual" feasibility). 

(Complementarity) . 

PROOF: Rewrite Q(x) in the form 

(7) Q(x) - Q(x0) = 2 £ (Cjx0)(x.-x°) + (x - x0)T C(x - x0) . 
J=l 

In general, let x and x be any solutions satisfying Ax = b, then 

n 

(8)     A(x - x0) = ^ AJCXJ-XJ) = 0 . 
      J-l 
* If desired the theory is easily extended to include the addition of linear terms 

*■*• Theorem 1 is, as indicated earlier, well known; we reprove it because it 
sets the stage for the development that follows. 



Multiplying on the left ty 27T and subtracting from (7) yields, for any 

Ax = b. Ax = b, 

n 

(9) Q(x)  - Q(x0)  = 2   ^   (cjx0 - WVJKXJ-XJ)  + (x - x0)T C(x - x0) 

J-l 

n 

= 2 Z yj {XJ-XV + {x -x0)T c(x -x0) * 
j=i 

where y. is defined by (5) for x = x .  If in addition complementarity holds, 
J 

x- * y., = 0> then (9) simplifies to 

(10) Q(x) - «(x0) = 2 ^ y^Xj ♦ (x - x0)T C(x - x0) . 

Finally, if primal and dual feasibility holds so that x0 V, 0, x. >, 0, y? >, 0, 

then all terms in (10) are non-negative, therefore Q(x) ^Q(x0). 

Improving a Non-Optimal Solution. Consider the system 

(11) Ax = b ,    x^O , 

Cx - A 7rT - In y = 0 , (I : Identity Matrix), 

where x Cx is assumed to be positive semi-definite. Let x , IT
0
, y be a basic 

feasible solution associated with a basic set with the complementarity property; 

namely, for each j either x. or y., but not both, are in the basic set. We 
J    J 

shall assume further that the right hand side has been perturbed to insure that 

all basic solutions are nondegenerate.  Note that neither TT nor y are sign 

restricted; only x ^0 is required for a "feasible" solution to (ll); an optimal 

solution will have been obtained if y. v 0 and x. • y. = 0 holds for all j, 
J        J   J 



THEOREM 2: If a basis Is complementary and y0 < 0, then any Increase of the 

nonbaslc variable xs, vlth adjustment of the basic variables. generates a class of 

solutions X^TT', y', such that x Cx decreases as long as y' < 0. 

PROOF: Let x be any solution in the class generated by x and let x'be 

generated by x = x'. From (9), Q(x) - Q(x') = 2yc
/ (x -x^) + (x - x'f C(x - x") 

since for all J ^ s either x or y = 0. The adjusted values of the basic variables 

are linear functions of xs, hence it follows that x - x^ (x -x^v where v is a 

constant vector. Hence, Q(x) - QCx7) = (x -x') fgy'+Cx.,^ )(vTCv)l and it is clear 

that if ys < 0, the right hand side is negative for sufficiently small (x -x') > 0. 

Moreover for Q(x) to decrease with an increase of x >, 0 from x' to x"' it must be 
s ^       s    s 

accompanied by y'< y^because Q(x//) - Q(xO= 2(x// - xOy' + U''- xO^Cv = 
ss sssNss 

= 2(x; - x^)y- - (xj - xs0
2vTCv whence 2(y^ - y^) = (x^ - x^Cv ^0. But vTC^0 

T 
because v Cv = 0 implies for positive semi-definite forms Cv = 0 and QCx")- Q(XO = 

= 2{x» - x^x'Cv + (x^' - xp2vCv = 0 whereas Q(x/0 - QCxO < 0; hence y« > y'. 

THEOREM 5: If xr drops as basic variable, introduction of y either causes 

T / T 
x Cx to decrease (and xr or ys to be dropped) or causes x Cx to stay fixed and 

ys to be dropped. If xr is dropped, this theorem may be reapplied; on the other 

hand, if ys drops, either initially or upon increase of y , Theorem 2 may be re- 

applied. 

PROOF: Our proof is completely general; however, for convenience we will 

illustrate it on system (13) below. let us suppose we had on some cycle a basis 

B and a basic feasible complementary solution with basic variables x , x , x , 

xl+> 'V "V ^5 
and the value of y^ = yc < 0. In this case, x becomes a new 

basic variable and we assume that x, dropped out to form a new basis B'. In (13), 

the dot • indicates a column in the basis B and * indicates that the column P 

associated with x is a candidate to replace a vector of the basis B. Let the 

representation of P,. in terms of the columns of the basis B be: 

(12)    P^ + P2a2 + P3a3 + P^ + P^6 + P^ + P^ = F^ 



where P    is 

X2 

al2 

the y^ 

X3 

ai3 

column in  (15). 

(13) 
xl 

X4 X5 ^1 ^ yl y2 y3 
y4 y5 

Const. 

all aik a15 
bl 

a21 a22 a23 
&2k a25 

b2 

cn C12 C13 
Clk C15 

ali a21 
-1 0 

C12 C22 C23 
C2k C25 

al2 a22 -1 0 

C15 C23 C33 C34 C35 a13 a23 
-1 0 

clk C2k C3^ ckk %5 aU &2k 
-1 0 

C15 C25 C3^ ^ C55 a15 a25 
-1 ü 

• ■ • • * • • • basis B 

• • • • • • -» • basis B7 

Let us now consider the representation of the y, column, P,, in terms of 

the basis B'where ti   are the weights on columns P. associated with basic x , 

TT. and Ä! are the weights on columns P associated with basic y , 

'   ^5 T/ (li^a)    P^ + P2^ + P^ + P5^ + P6^ + P7^ + P5^ = P4 

We wish to show that yi^Q.     If x' < 0, it is clear that an increase of y. 

T. will cause xr to increase and x Cx to decrease as long as the value of yc < 0 
? ? 

in the basic solution. On the other hand, if V = 0, we shall show that y,- 

T will drop with no change in x Cx. 

Let [V] be the representation of P, in terms of the prior basis B, 

(i.e., before the introduction of x,. in place of x, ), 

(Ub) Pl\ + ^ + P5S + *k\ + p6\ + PTXf + P5X5 =   Fh 



Then, setting A = (V, V, \,  X, ), the first six rows of this representati 

yields (15) and (16) 

or. 

(15) 

(16) 

Call  al2  a13  aU] 

[a21  a22  a25  a24] 

^'n      C12  C
15 

Clh 

:12  C22  C25 C2k 

:13  C23  C55  C3^ 

'Ik     c2h     c5k     chk 

.T 

A  + 

11 

12 

13 

114 

^6 

^^ 

\, = 

ü 

Ü 

' 0" 

0 

0 

-1 

Multiplying (l6) by A on the left and denoting the square matrix by C,, yields, 

T T 
^y (15), ^cj^ = -\« Since AC, A is positive semi-definite (C, is a principal 

minor of C), ?kC, A ^ 0 and \ ^ 0  follows. 

Case }\1 < 0: Let us assume \  < 0. We observe that in the representation 

(12) of P in terras of B, the weight a, is positive (since x, decreased when x- 

increased). By eliminating P, from (12) and (ite) to obtain (ite), and noting 

ali. > 0'  \< 0>  it follows that Xi = \/au < 0 (vhere ^ I*  ^e weight on P in 

the representation of P, in terms of B'). But ?u < 0 mpJ.ies that the introduc- 

tion of y, into the basic set for B' will increase x^. Moreover, ve may adopt 

the point of view, for the purpose of tha proof, that it is the increase in x,. 
5 

that is "causing" the increase in y, (instead of the other way around), so that 

we are, in fact, repeating the situation just considered of increasing x,- and 

adjusting the other "basic" variables, except here y, is in the basic set in- 

stead of x,. It follows, therefore, as before, that an increase in x decreases 

T x Cx as long as y,- remains negative in value in the adjustment of the basic 

solution by the increase of x . 

-7- 



Case  V = 0: Let us now assume X, = Ü. We may set A. = >/ because the 

representation of P. is the same, whether in terms of B or B*; hence, T*! = 0. 

In this case XC^A = ->4= 0; therefore, C^T = 0 by a well known property of 

semi-definite forms. In this case A = ü must hold because A + 0 implies a 

dependence of the first four columns of (15) and (l6) which is impossible be- 

cause then the square array of coefficients of (15) and (16), and in turn B, 

would be singular. 

Setting X = 0 in (16) and noting that at least one V must be nonzero,1=1,...,7, 

we see that there is a dependence between the rows of [a .] for those columns 
i J 

x, associated with the basic set, other than x . By forming a linear combina- 
u 5 

tion of the rows of A, we could therefore rewrite (for the purpose of the 

proof) the system so that top row has zero coefficients for these x . Thus 
J 

(17) 

xl X2 X3 
xk X, "i -2 yl ^2 y3 

y4 y5 
Const. 

0 Ü 0 au 45 \ 

a21 a22 a23 
&2k a25 \ 

Cll C12 C13 
Clk C15 

0 a21 -1 ■ 0 

C12 C22 C25 
C2k C25 

0 a22 -1 0 

C13 C25 C55 
Zlk C55 

0 a25 
-x 0 

cll* C2k C54 
ckk c45 4. a24 -1 c 

c15 C25 C35 c45 C55 '« a25 -1 0 

• - • • • • »i • 



Now, a , + 0 because B was i-ionsingular and a i  0 because the same is 

tirue for B' .  It is also obvious that the signs of a. , and a' are the same 

for x, to decrease when x_ increases. Note new that the 1T~   column is repre- 

senzabxe as a linear combination of the negative unit columns of y, . y^ (and, 

in a more general case than the example, the other negative unit columns of 

the basic y.).  Moreover it is clear that since &',   and a.,- have the same sign, 
J —'+    —,.' 

increasing y. from its zero value results in a positive change in y.-. 

Since the y; are not sign restricted, y. can be increased uitil y^ is 

dropped, out of the basic set at value zero  because all x, values are unaffected. 

'p 
Hence, in this shift of basis there is no change in -he value of x Cxj however, 

the introduction of y, into the basic set and dropping of y , gives rise to new 

basic set that satisfies the complementarity property» We may thus apply again 

I1 

l'heorca S to reduce x I^A. 

TliS QUADRATIC .UjGöhlTiuyi: 

STEP 1.  Initiate: Lex Ax0 ~ b be a basic feaaif-»le üflution for 

/■v; - b, x ^ O, W3.v_i ^as-.c vfir-.a aiiwi .x  . .., j   a«»©, .'■. . ,» 

;"ioose f.'>r t.tie iui' 

enlsirged yriAblen: (c.J these >: , (b) Las; cAnieJiencs, y , 

of the aonbasic x.. and (c) the seJ; 7f..  ITn^.ar coefficient 
o 

matrix Ls uonsingular.) 

GTSP 2.  For tat' uiines of v" of the basic solutiur. deti'.i'ii.'ie 
<. 

WL'.n /', - y0,  if y0 > 0 terminate; the solu^io..^ is^ optlml. 

o 
If y < 0 introduce into basic set x ; if y, drops tram 

s s     s 
basic set, repeat Step 2:     Otherwise if x drops, 

STEP 3. Introduce y., into basic set. If y drops, return to y-oep 2? 

otherwise, if some x  drops, repeat Step 3 with .",. playing 

the role of r. 



L 

Dr p 

Determine s by 

Min y^ = ys 

No 

Yes 

Increase x , 
s' 

adjust 

basic variables 

Yes No 

Termi nate: basic 

solution is optimal 

Drop x  , 
ri 

increase j      , 
adjust    i 
basi2 variables 

THEOREM k.     The iterative process is finite. 

PROOF: The number of possible basic sets is finite. Each one generated by 

the process is different because of the decreases In xCx. But 

this means the cyclic process must terminate. 
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CONCLUSION: 

Formula (10) is the analog for quadratic programs of the familiar 

adjusted objective function obtained by elimination of the basic variables 

in linear programming.  [For general convex objectives, it appears to be a 

natural take-off for a quadratic fit.]  If the coefficients y. of the x. are 
J       J 

non-negative, the solution is optimal.  If not, a new basic solution for 

system (ll) is obtained by increasing x corresponding to y = Min y , 
s s       j 

Either y drops out as basic variable or y drops after a sequence of replace- 
s s 

ments of basic variables x by their correspondents y . With the latter pro- 

vision for a decrease in the dimensionality of the solution, the algorithm 

may be viewed as a direct extension of the regular simplex method to quadratic 

programs (in contrast, the algorithms of Wolfe and Markowitz may be viewed as 

parametric extensions). 
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